Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(3-Methoxybenzylidene)chroman-4one

Kaalin Gopaul,^a Mahidansha Shaikh,^a Deresh Ramjugernath,^b Neil A. Koorbanally^a and Bernard Omondi^a*

^aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and ^bSchool of Engineering, University of KwaZulu-Natal, Howard College Campus, Private Bag X54001, Durban 4000, South Africa

Correspondence e-mail: owaga@ukzn.ac.za

Received 1 March 2012; accepted 4 March 2012

Key indicators: single-crystal X-ray study; T = 446 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.112; data-to-parameter ratio = 12.7.

In the title compound, $C_{17}H_{14}O_3$, the dihedral angle between the methoxybenzene unit and the benzene ring of the chromanone system is 64.12 (3)°. The crystal structure is stabilized by weak $C-H\cdots O$ interactions.

Related literature

For the preparation, see: Shaikh *et al.* (2011). For related structures, see: Kirkiacharian *et al.* (1984); Marx *et al.* (2008); Suresh *et al.* (2007); Chantrapromma *et al.* (2006); Augustine *et al.* (2008). For the biological activity of this class of compound, see: du Toit *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{14}O_3 \\ M_r = 266.28 \\ \text{Monoclinic, } P2_1/c \\ a = 12.4143 \; (9) \text{ Å} \\ b = 6.7141 \; (5) \text{ Å} \\ c = 16.0031 \; (10) \text{ Å} \\ \beta = 98.658 \; (4)^{\circ} \end{array}$

 $V = 1318.67 (16) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 446 K $0.28 \times 0.21 \times 0.05 \text{ mm}$

Data collection

Refinement

Nonius KappaCCD diffractometer164414 measured reflections R_{ii} 2315 independent reflections

1662 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

nejinemeni	
$R[F^2 > 2\sigma(F^2)] = 0.041$	182 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
2315 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2B\cdots O1^{i}$ $C18-H18B\cdots O3^{ii}$	0.97 0.96	2.54 2.50	3.3808 (19) 3.4227 (19)	145 161
		. 1 . (11)	1 1	

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Ms Hong Su for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2528).

References

- Augustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080.
- Chantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, 01254–01256.
- du Toit, K., Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457–490. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106–108.
- Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, 0328.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Shaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161– 166.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, 04387.

supplementary materials

Acta Cryst. (2012). E68, o1006 [doi:10.1107/S160053681200949X]

3-(3-Methoxybenzylidene)chroman-4-one

Kaalin Gopaul, Mahidansha Shaikh, Deresh Ramjugernath, Neil A. Koorbanally and Bernard Omondi

Comment

The title compound, 3-(3-Methoxybenzylidene)-chroman-4-one, belongs to a class of compounds called homoisoflavonoids, which are C-16, α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atom (Kirkiacharian *et al.*, 1984). Homoisoflavonoids may be categorized into four groups depending on the type of structural backbone present. The four groups are 3-benzylidene-4-chromanones, of which the title compound belongs to as well as the 3-benzyl-4-chromanones, 3-benzyl-3-hydroxy-4-chromanones and scillascillins (du Toit *et al.*, 2010).

This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian *et al.*, 1984). The 3benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit *et al.*, 2010). The most commonly used procedure for the synthesis of homoisoflavoinoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh *et al.*, 2011).

In the molecular structure, the dihedral angle between the methoxybenzene moeity and the benzene ring of the chromanone moiety is 64.12 (3) °. The Chromanone moiety is fused with a phenyl ring and adopts a half chair conformation (Fig 1). The molecule of (I) is stablized by two weak C—H…O intramolecular interactions (Table 1).

Experimental

A mixture of chroman-4-one (1 g, 6.749 mmol), 3-methoxybenzaldehyde (1.103 g, 8.099 mmol) and 10–15 drops of piperidine was heated at 80°C for 20 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. The reaction mixture was extracted with ethyl acetate (3×30 mL). The ethyl acetate layers were combined, washed with brine (20 ml), water (2×10 mL) and dried over anhydrous magnesium sulfate. The solvent was reduced and the compound purified by column chromatography using silica gel (Merck 9385, 40–63 μ m particle size) with a mobile phase of 2% ethyl acetate in hexane to yield the title compound with a m.p. of 85–86°C.

¹H NMR: δ (ppm): 3.83 (3*H*, s, OCH₃), 5.36 (2*H*, d, J = 1.72 Hz, 2*H*-2), 6.82 (1*H*, s, H-2'), 6.87 (1*H*, d, J = 7.60 Hz, H-6'), 6.93 (2*H*, m, H-8, H-4'), 7.05 (1*H*, t, J = 7.52 Hz, H-6), 7.34 (1*H*, t, J = 7.92 Hz, H-5'), 7.47 (1*H*, t, J = 8.52 Hz, H-7), 7.82 (1*H*, s, H-9), 8.00 (1*H*, dd, J = 7.82, 1.46 Hz, H-5). ¹³C NMR: δ (ppm): 55.36 (OCH₃), 67.66 (C-2), 115.06 (C-4'), 115.42 (C-2'), 117.93 (C-8), 121.92 (C-6), 122.02 (C-4a), 122.28 (C-6'), 127.96 (C-5), 129.76 (C-5'), 131.15 (C-3), 135.69 (C-1'), 135.90 (C-7), 137.40 (C-9), 159.69 (C-3'), 161.18 (C-8a), 182.23(C-4).

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008);

program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

3-(3-Methoxybenzylidene)chroman-4-one

Crystal data

$C_{17}H_{14}O_3$
$M_r = 266.28$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 12.4143 (9) Å
<i>b</i> = 6.7141 (5) Å
<i>c</i> = 16.0031 (10) Å
$\beta = 98.658 \ (4)^{\circ}$
$V = 1318.67 (16) Å^3$
Z = 4

Data collection

Nonius KappaCCD diffractometer Graphite monochromator φ and ω scans 4414 measured reflections 2315 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.112$ S = 1.002315 reflections 182 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 560 $D_x = 1.341 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5379 reflections $\theta = 2.6-25^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 446 KBlock, colourless $0.28 \times 0.21 \times 0.05 \text{ mm}$

1662 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25^\circ, \ \theta_{min} = 2.6^\circ$ $h = -14 \rightarrow 14$ $k = -7 \rightarrow 7$ $l = -19 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0753P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 Å for Me H atoms, 0.97 Å for Methylene H atoms and 0.93 Å for aromatic H atoms; $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for Me groups)] and were included in the refinement in the riding model approximation.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) …. 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 3 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF …. 3 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 46 Perc. Noted

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.67104 (13)	-0.0244 (2)	0.41235 (9)	0.0308 (4)
C2	0.48754 (13)	0.0872 (2)	0.36955 (9)	0.0345 (4)
H2A	0.4209	0.0984	0.3941	0.041*
H2B	0.47	0.0197	0.3156	0.041*
C3	0.52909 (12)	0.2927 (2)	0.35484 (8)	0.0311 (4)
C4	0.64423 (13)	0.3033 (2)	0.33980 (9)	0.0334 (4)
C5	0.71355 (12)	0.1319 (2)	0.36945 (9)	0.0309 (4)
C6	0.82476 (13)	0.1305 (2)	0.36328 (9)	0.0384 (4)
H6	0.8537	0.2318	0.3338	0.046*
C7	0.89190 (15)	-0.0181 (2)	0.40005 (10)	0.0431 (4)
H7	0.9659	-0.0166	0.3963	0.052*
C8	0.84792 (14)	-0.1708 (2)	0.44296 (10)	0.0425 (4)
H8	0.8933	-0.2712	0.4681	0.051*
C9	0.73865 (13)	-0.1761 (2)	0.44890 (9)	0.0368 (4)
H9	0.7102	-0.2801	0.4771	0.044*
C10	0.47198 (13)	0.4614 (2)	0.35582 (8)	0.0332 (4)
H10	0.5096	0.578	0.3479	0.04*
C11	0.35772 (13)	0.4872 (2)	0.36769 (9)	0.0319 (4)
C12	0.27627 (12)	0.3537 (2)	0.33279 (8)	0.0302 (4)
H12	0.2937	0.2466	0.3005	0.036*
C13	0.16990 (12)	0.3818 (2)	0.34652 (8)	0.0307 (4)
C14	0.14246 (14)	0.5448 (2)	0.39277 (9)	0.0360 (4)
H14	0.0707	0.5638	0.4012	0.043*
C15	0.22209 (14)	0.6782 (2)	0.42606 (9)	0.0387 (4)
H15	0.2038	0.787	0.457	0.046*
C16	0.32907 (14)	0.6509 (2)	0.41361 (9)	0.0364 (4)
H16	0.3822	0.7419	0.4359	0.044*
C18	0.11018 (14)	0.0863 (2)	0.27058 (10)	0.0392 (4)
H18A	0.1373	0.1281	0.2203	0.059*
H18B	0.0455	0.008	0.2554	0.059*
H18C	0.1645	0.0078	0.3048	0.059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

01	0.68030 (9)	0.45005 (16)	0.30738 (7)	0.0461 (3)	
O2	0.56502 (9)	-0.03170 (14)	0.42472 (6)	0.0357 (3)	
O3	0.08530 (8)	0.25717 (14)	0.31708 (6)	0.0377 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U ¹³	<i>U</i> ²³
C1	0.0339 (10)	0.0333 (8)	0.0255 (7)	-0.0017 (7)	0.0053 (7)	-0.0052 (6)
C2	0.0318 (9)	0.0358 (9)	0.0349 (8)	-0.0019 (7)	0.0023 (7)	0.0042 (7)
C3	0.0340 (10)	0.0331 (8)	0.0250 (7)	-0.0038(7)	0.0010 (7)	0.0028 (6)
C4	0.0364 (10)	0.0350 (8)	0.0284 (8)	-0.0060(7)	0.0033 (7)	0.0012 (7)
C5	0.0338 (10)	0.0342 (8)	0.0246 (7)	-0.0045 (7)	0.0043 (6)	-0.0018 (6)
C6	0.0393 (11)	0.0442 (9)	0.0328 (8)	-0.0033 (8)	0.0095 (7)	0.0036 (7)
C7	0.0347 (10)	0.0541 (10)	0.0421 (9)	0.0034 (8)	0.0115 (8)	0.0024 (8)
C8	0.0436 (12)	0.0450 (10)	0.0395 (9)	0.0096 (8)	0.0082 (8)	0.0036 (7)
C9	0.0440 (11)	0.0340 (8)	0.0331 (8)	0.0016 (8)	0.0086 (7)	0.0027 (7)
C10	0.0371 (10)	0.0318 (8)	0.0295 (8)	-0.0079 (7)	0.0014 (7)	0.0039 (6)
C11	0.0369 (10)	0.0295 (8)	0.0285 (7)	-0.0001 (7)	0.0031 (7)	0.0063 (6)
C12	0.0357 (10)	0.0273 (8)	0.0272 (7)	0.0025 (7)	0.0033 (7)	0.0006 (6)
C13	0.0327 (10)	0.0304 (8)	0.0279 (7)	-0.0003 (7)	0.0012 (7)	0.0029 (7)
C14	0.0376 (10)	0.0369 (9)	0.0337 (8)	0.0075 (7)	0.0058 (7)	-0.0005 (7)
C15	0.0505 (12)	0.0320 (8)	0.0328 (8)	0.0067 (8)	0.0036 (8)	-0.0029 (7)
C16	0.0459 (11)	0.0281 (8)	0.0331 (8)	-0.0049 (7)	-0.0006 (7)	0.0016 (7)
C18	0.0399 (10)	0.0356 (9)	0.0414 (9)	-0.0022 (7)	0.0035 (8)	-0.0060 (7)
01	0.0398 (7)	0.0450 (7)	0.0544 (7)	-0.0050(5)	0.0104 (6)	0.0163 (6)
O2	0.0322 (7)	0.0353 (6)	0.0399 (6)	-0.0008(5)	0.0064 (5)	0.0092 (5)
O3	0.0320 (7)	0.0366 (6)	0.0442 (6)	0.0002 (5)	0.0051 (5)	-0.0072 (5)

Geometric parameters (Å, °)

C1—O2	1.3610 (18)	С9—Н9	0.93
C1—C9	1.391 (2)	C10—C11	1.469 (2)
C1—C5	1.400 (2)	C10—H10	0.93
C2—O2	1.4443 (18)	C11—C16	1.397 (2)
C2—C3	1.504 (2)	C11—C12	1.403 (2)
C2—H2A	0.97	C12—C13	1.384 (2)
C2—H2B	0.97	C12—H12	0.93
C3—C10	1.337 (2)	C13—O3	1.3697 (18)
C3—C4	1.487 (2)	C13—C14	1.392 (2)
C4—O1	1.2290 (16)	C14—C15	1.380 (2)
C4—C5	1.472 (2)	C14—H14	0.93
C5—C6	1.399 (2)	C15—C16	1.384 (2)
C6—C7	1.375 (2)	C15—H15	0.93
С6—Н6	0.93	C16—H16	0.93
С7—С8	1.391 (2)	C18—O3	1.4264 (16)
С7—Н7	0.93	C18—H18A	0.96
C8—C9	1.374 (2)	C18—H18B	0.96
C8—H8	0.93	C18—H18C	0.96
O2—C1—C9	116.60 (12)	C3—C10—C11	128.70 (13)

$0^{2}-C^{1}-C^{5}$	122 87 (13)	C3_C10_H10	115.6
62 - 61 - 65	122.07(15) 120.44(14)	$C_{11} = C_{10} = H_{10}$	115.6
$0^{2}-0^{2}-0^{3}$	$112 \ 97 \ (13)$	C_{16} C_{11} C_{12}	119.0
$\Omega_2 = C_2 = H_2 A$	109	C_{16} $-C_{11}$ $-C_{10}$	119.11(14) 119.20(14)
$C_2 = C_2 = H_2 A$	109	C_{12} C_{11} C_{10}	121 68 (13)
$\Omega^2 - \Omega^2 - H^2 B$	109	$C_{12} = C_{11} = C_{10}$	121.00(13) 119.85(13)
$C_2 = C_2 = H_2 B$	109	C_{13} C_{12} H_{12}	120.1
$H_2 \Delta (C_2) = H_2 B$	107.8	C_{11} C_{12} H_{12}	120.1
C10 - C3 - C4	119.08 (13)	03-C13-C12	120.1 124.26(13)
C10-C3-C2	125.45(14)	03-C13-C14	124.20(13) 115.26(13)
$C_1 C_2 C_2$	115 46 (13)	C_{12} C_{13} C_{14}	113.20(13) 120.48(14)
$C_{1} = C_{2} = C_{2}$	113.40(13) 122.03(14)	$C_{12} = C_{13} = C_{14}$	120.48(14) 110.80(15)
01 - C4 - C3	122.03(14) 121.80(13)	$C_{15} = C_{14} = C_{15}$	119.80 (15)
$C_{1} - C_{4} - C_{3}$	121.00(13) 116(12(12))	$C_{13} = C_{14} = H_{14}$	120.1
$C_{5} = C_{4} = C_{5}$	110.12(12) 118.60(14)	C14 - C15 - C16	120.1 120.26(14)
C6 - C5 - C1	116.00(14) 121.17(12)	C14 - C15 - C10	120.30 (14)
$C_{0} - C_{3} - C_{4}$	121.17(13)	C14—C15—H15	119.8
C1 - C5 - C4	119.92 (13)	C16—C15—H15	119.8
$C/-C_{0}$	121.05 (14)		120.37 (15)
С/—С6—Н6	119.5	C15—C16—H16	119.8
С5—С6—Н6	119.5	C11—C16—H16	119.8
	119.27 (15)	O_3 — C_{18} — H_{18A}	109.5
C6—C/—H7	120.4	O3—C18—H18B	109.5
C8—C/—H7	120.4	H18A—C18—H18B	109.5
C9—C8—C7	121.20 (15)	03—C18—H18C	109.5
C9—C8—H8	119.4	H18A—C18—H18C	109.5
С7—С8—Н8	119.4	H18B—C18—H18C	109.5
C8—C9—C1	119.43 (14)	C1—O2—C2	117.43 (10)
С8—С9—Н9	120.3	C13—O3—C18	117.11 (11)
С1—С9—Н9	120.3		
$02 - C^2 - C^3 - C^{10}$	-136.04(14)	C5-C1-C9-C8	0.3(2)
02 - C2 - C3 - C4	42 74 (17)	C4-C3-C10-C11	$178\ 71\ (13)$
$C_{10} - C_{3} - C_{4} - O_{1}$	-190(2)	C_{2} C_{3} C_{10} C_{11}	-26(2)
C_{2} C_{3} C_{4} C_{1}	162 15 (13)	C_{3} C_{10} C_{11} C_{16}	143.03(15)
C_{10} C_{3} C_{4} C_{5}	158 36 (13)	C_{3} C_{10} C_{11} C_{12}	-381(2)
$C_{2} = C_{3} = C_{4} = C_{5}$	-20.50(18)	C_{16} C_{11} C_{12} C_{13}	-2.14(19)
$C_2 = C_3 = C_4 = C_5$	177 14 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.04(12)
$C_{2} - C_{1} - C_{5} - C_{6}$	1/7.14(12) 0.8(2)	$C_{11} = C_{12} = C_{13} = C_{13}$	-17824(12)
$C_{2} = C_{1} = C_{2} = C_{0}$	0.8(2)	$C_{11} = C_{12} = C_{13} = C_{14}$	178.24(12)
$C_{2} = C_{1} = C_{2} = C_{4}$	-172.70(13)	C11 - C12 - C13 - C14	1.0(2) 170.26(12)
$C_{2} = C_{1} = C_{2} = C_{4}$	172.79(15) 1.2(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.8(2)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	1.2(2) -176 16(12)	C_{12} C_{13} C_{14} C_{15} C_{16}	0.8(2)
$C_{3} - C_{4} - C_{5} - C_{0}$	-1/0.10(12) 174.62(12)	$C_{13} - C_{14} - C_{15} - C_{10}$	0.1(2)
$C_1 = C_4 = C_5 = C_1$	-2.72(10)	$C_{14} = C_{15} = C_{16} = C_{17}$	0.4(2)
$C_{1} = C_{4} = C_{1} = C_{1}$	2.72(19)	C_{12} C_{11} C_{16} C_{15} C_{10} C_{11} C_{16} C_{15}	1.3(2) -170.60(12)
$C_1 = C_2 = C_1 = C_1$	1.3(2) 172.06(14)	$C_{10} - C_{10} - C$	-162.09(13)
$C_{4} = C_{5} = C_{6} = C_{7} = C_{9}^{9}$	1/2.00(14)	$C_{2} = C_{1} = 0_{2} = 0_{2}$	-103.08(12)
$C_{1} = C_{1} = C_{2} = C_{2}$	0.9(2)	$C_{2} = C_{1} = 0_{2} = C_{2}$	20.40 (18) 42.00 (16)
C_{-}	0.3(2)	$C_{2} = C_{2} = C_{12} = C_{12}$	-43.00 (16)
U/U8U9U1	-0.9 (2)	C12 - C13 - C18	1.11 (19)

supplementary materials

-1/6.20 (13)	C14—C13—O3—C18		-178.95 (12)	
<i>D</i> —H	Н…А	D···A		
0.97	2.54	3.3808 (19)	145	
0.96	2.50	3.4227 (19)	161	
	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>	D—H H···A 0.97 2.54 0.96 2.50	D—H H···A D···A 0.97 2.54 3.3808 (19) 0.96 2.50 3.4227 (19)	

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2.